skip to main content


Search for: All records

Creators/Authors contains: "Li, Donghao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fish locomotion emerges from diverse interactions among deformable structures, surrounding fluids and neuromuscular activations, i.e. fluid–structure interactions (FSI) controlled by fish's motor systems. Previous studies suggested that such motor-controlled FSI may possess embodied traits. However, their implications in motor learning, neuromuscular control, gait generation, and swimming performance remain to be uncovered. Using robot models, we studied the embodied traits in fish-inspired swimming. We developed modular robots with various designs and used central pattern generators (CPGs) to control the torque acting on robot body. We used reinforcement learning to learn CPG parameters for maximizing the swimming speed. The results showed that motor frequency converged faster than other parameters, and the emergent swimming gaits were robust against disruptions applied to motor control. For all robots and frequencies tested, swimming speed was proportional to the mean undulation velocity of body and caudal-fin combined, yielding an invariant, undulation-based Strouhal number. The Strouhal number also revealed two fundamental classes of undulatory swimming in both biological and robotic fishes. The robot actuators were also demonstrated to function as motors, virtual springs and virtual masses. These results provide novel insights in understanding fish-inspired locomotion.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  2. Abstract

    In animal and robot swimmers of body and caudal fin (BCF) form, hydrodynamic thrust is mainly produced by their caudal fins, the stiffness of which has profound effects on both thrust and efficiency of swimming. Caudal fin stiffness also affects the motor control and resulting swimming gaits that correspond to optimal swimming performance; however, their relationship remains scarcely explored. Here using magnetic, modular, undulatory robots (μBots), we tested the effects of caudal fin stiffness on both forward swimming and turning maneuver. We developed six caudal fins with stiffness of more than three orders of difference. For aμBot equipped with each caudal fin (andμBot absent of caudal fin), we applied reinforcement learning in experiments to optimize the motor control for maximizing forward swimming speed or final heading change. The motor control ofμBot was generated by a central pattern generator for forward swimming or by a series of parameterized square waves for turning maneuver. In forward swimming, the variations in caudal fin stiffness gave rise to three modes of optimized motor frequencies and swimming gaits including no caudal fin (4.6 Hz), stiffness <10−4Pa m4(∼10.6 Hz) and stiffness >10−4Pa m4(∼8.4 Hz). Swimming speed, however, varied independently with the modes of swimming gaits, and reached maximal at stiffness of 0.23 × 10−4Pa m4, with theμBot without caudal fin achieving the lowest speed. In turning maneuver, caudal fin stiffness had considerable effects on the amplitudes of both initial head steering and subsequent recoil, as well as the final heading change. It had relatively minor effect on the turning motor program except for theμBots without caudal fin. Optimized forward swimming and turning maneuver shared an identical caudal fin stiffness and similar patterns of peduncle and caudal fin motion, suggesting simplicity in the form and function relationship inμBot swimming.

     
    more » « less
  3. Free, publicly-accessible full text available October 1, 2024
  4. This paper describes a hybrid approach for modeling nonlinear vibrations and determining essential (normal form) coefficients that govern a reduced-order model of a structure. Incorporating both computational and analytical tools, this blended method is demonstrated by considering a micro-electro-mechanical vibrating gyroscopic rate sensor that is actuated by segmented DC electrodes. Two characterization methods are expatiated, where one is more favorable in computational tools and the other can be used in experiments. Using the reduced model, it is shown that tuning the nonuniform DC bias results in favorable changes in Duffing and mode-coupling nonlinearities which can improve the gyroscope angular rate sensitivity by two orders of magnitude. 
    more » « less
  5. null (Ed.)
    Abstract This paper considers the dynamic response of a single degree of freedom system with nonlinear stiffness and nonlinear damping that is subjected to both resonant direct excitation and resonant parametric excitation, with a general phase between the two. This generalizes and expands on previous studies of nonlinear effects on parametric amplification, notably by including the effects of nonlinear damping, which is commonly observed in a large variety of systems, including micro- and nano-scale resonators. Using the method of averaging, a thorough parameter study is carried out that describes the effects of the amplitudes and relative phase of the two forms of excitation. The effects of nonlinear damping on the parametric gain are first derived. The transitions among various topological forms of the frequency response curves, which can include isolae, dual peaks, and loops, are determined, and bifurcation analyses in parameter spaces of interest are carried out. In general, these results provide a complete picture of the system response and allow one to select drive conditions of interest that avoid bistability while providing maximum amplitude gain, maximum phase sensitivity, or a flat resonant peak, in systems with nonlinear damping. 
    more » « less
  6. null (Ed.)